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Abstract
Starting from an algebraic description of collinearity within density functional
theory the concept of magnetic configurations is introduced, which in turn is
of crucial importance to define the interlayer exchange energy (IEC) and the
(giant) magnetoresistance (GMR). The applications shown are meant to clarify
not only the conceptual basis of IEC and GMR, but also the difficulties that can
arise in actual calculations.

1. Introduction

Right from the beginning, i.e., right after their discoveries, interlayer exchange coupling (IEC)
and giant magnetoresistance (GMR) were considered to be just two sides of one coin or at least
twins, as far as the oscillations with respect to the number of spacer layers and other properties
are concerned. Perhaps one of the starting points for this conception was a paper describing a
two-monolayer periodicity of the oscillations in the magnetoresistance of Fe/Cr/Fe trilayers [1].
There results of Kerr and magnetoresistance measurements were put in one and the same figure,
and, alas, their peak positions at least up to a spacer thickness of about 15–20 Å coincided.
Many papers before and even more investigations after publication of this paper dealt with all
kinds of effect of either the IEC or the GMR. In particular the question of where the GMR comes
from virtually haunted the whole community since up to then only electric transport ideas about
bulk systems were available. Impurity scattering, interdiffusion at interfaces, macroscopical
roughness, quantum well states, confinement effects etc attained their significance as buzz-
words in this field for very simple reasons: all experiments were performed on more or less
perfect samples, at different temperatures, with sometimes incompatible growing conditions
and so on. It took almost a decade to improve the quality of system growing, but also the quality
of measurements in order to produce ‘geographically’ reproducible results. Quite clearly the
industrial laboratories had different approaches, mostly based on chemical or metallurgical
experience; after all, their aims were to produce systems suitable for reliable practical devices.
Rather hesitant new theoretical concepts in dealing with electric transport in this kind of system
were introduced. For a review of GMR see e.g. [2].
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Since—as usual—concepts depend very much on the clarity of definitions, here first the
quantum mechanical concepts of collinearity and magnetic configurations (in the context of
density functional theory) are reviewed before the actual physical properties IEC and GMR are
discussed. These preliminary definitions seem to be important since very often classical spin
concepts are mixed up with calculational schemes based on quantum mechanical approaches.
Only in the last section are the two properties, IEC and GMR, combined with each other (in
order to justify the ‘and’ in the title).

2. Theoretical concepts

2.1. Collinearity and non-collinearity

2.1.1. ‘Spinors’. Suppose one-particle (electron) wavefunctions are products of the kind

�(r, σ ) = ψ(r)φ(σ ); σ ≡ ms = ± 1
2 ,

φ( 1
2 ) =

(
1
0

)
, φ(− 1

2 ) =
(

0
1

)
,

(1)

where obviously the φ(σ), σ = ± 1
2 , are not functions, but unit vectors in a two-dimensional

vector space, usually termed ‘spin space’:

(φ(σ ) · φ(σ ′)) = δσσ ′. (2)

In principle the transformation properties of �(r, σ ) are conceptually very easy, since

R ∈ O(3) : R�(r, σ ) = ψ(R−1r)φ(σ ) ≡ φ(σ)ψ(R−1r) = φ(σ)D(R)ψ(r), (3)

where D(R) is a representation of R ∈ O(3) and

U(R) ∈ SU(2) : U(R)[ψ(r)φ(σ )] = ψ(r)[U(R)φ(σ )]. (4)

Recalling now the definition of the vector of Pauli spin matrices,

σ = (σx , σy, σz), σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, (5)

the Hamiltonian is usually defined within the local density functional as

H(r) = I2(− 1
2∇2 + V (r)) + σz B(r), (6)

where In is a n × n unit matrix and V (r) is the (effective) potential. One obvious meaning
of the second term on the rhs of equation (6) is that the (effective) magnetization B(r) points
along an arbitrary assumed ẑ-direction, say n ∈ R3, i.e., is of the form

B(r) = B(r)n, n = (0, 0, 1). (7)

The general form of the scalar product between σ and B(r) is of course given by

(σ · B(r)) = B(r)(σ · ξ) = B(r)(σxξx + σyξy + σzξz), (8)

with ξ ∈ R3 being a vector of unit length in an arbitrary direction.
Quite clearly by keeping in mind equations (3) and (4), a transformation of equation (6)

of the kind

U(R)H(r)U−1(R) = I2(− 1
2∇2 + V (r)) + U(R)σz Bz(r)U−1(R), U(R) ∈ SU(2), (9)

really means that only the second term on the rhs of equation (9) is transformed as

U(R)σz B(r)U−1(R) = B(r)U(R)(σ · n)U−1(R) = B(r)(σ′ · n), (10)
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where

σ′ = (σ ′
x , σ

′
y, σ

′
z) = U(R)σU−1(R). (11)

Reviewing equation (10) again, it is obvious that the scalar product on the rhs of this equation
can be written also as

(σ′ · n) = (σ · ξ), (12)

where—as should be noted in particular—

ξ = D(3)(R)n. (13)

D(3)(R) is a rotation in R3 such that the condition in equation (12) is met.
Since obviously a transformation in spin-space corresponds to a similarity transformation

for the Pauli spin matrices, such a transformation can be viewed also as an ‘induced’
transformation for the orientation of B(r).

If N0 = {ni |ni = (0, 0, 1),∀i} denotes a set of unit vectors in the ẑ-direction centred at
the sites i = 1, 2, . . . , N , and the set N = {ξi} specifies the actual orientations in these sites,
an arbitrary pair of orientations, ξi and ξ j , is said to be ‘parallel’ to N0 if

ξi = D(3)(E)ni; ξ j = D(3)(E)n j , (14)

‘antiparallel’ to N0 if

ξi = D(3)(E)ni; ξ j = D(3)(i)n j (15)

and ‘collinear’ to N0 if

ξi = D(3)(E)ni; ξ j = D(3)(R)n j ; R = E or i, (16)

where

D(3)(E) = I3, D(3)(i) = −I3. (17)

It should be recalled that D(3)(E) is induced by a transformation in spin space with

U(R) ≡
(

1 0
0 1

)
−→ D(3)(E), (18)

and D(3)(i) for example by

U(R) ≡ σy =
(

0 −i
i 0

)
−→ D(3)(i). (19)

The last equation can easily be checked using the properties of the Pauli spin matrices, namely

U(R)U(R)−1 =
(

1 0
0 1

)
= σ 2

y , σyσzσy = −σz, (20)

from which immediately follows that also

U(R) ≡ σx =
(

0 1
1 0

)
−→ D(3)(i). (21)

If, therefore, in equation (16) R is induced by an arbitrary rotation in spin space, U(R) �=
I2, σx , σy , then this pair of orientations is called ‘non-collinear’ for short.

It should be noted that the use of D(3)(E) or the choice of n in equation (16) does not
imply a loss of generality, since the same description applies also to a pair of orientations

ξi = D(3)(S)D(3)(E)ni , ξ j = D(3)(S)D(3)(R)n j , (22)

with D(3)(S) being induced by some rotation U(S) ∈ SU(2). Since in equation (9) the first
term on the rhs, namely I2(− 1

2∇2+V (r)), remains unchanged for any arbitrary U(R) ∈ SU(2),
the definition of collinearity, see equation (16), is not restricted by the possible presence of a
point group symmetry.
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2.1.2. ‘Bispinors’. By using a relativistic description within the local density functional the
Hamiltonian is given by

H(r) = cα · p + βmc2 + I4V (r) + β�z B(r), (23)

where α = (α1, α2, α3),

αi =
(

0 σi

σi 0

)
, β =

(
I2

−I2

)
, �i =

(
σi 0
0 σi

)
. (24)

The transformation properties of H(r) are now slightly more complicated [17]. Consider a
rotation R, then invariance by R implies that

S(R)H(R−1r)S−1(R) = H(r), (25)

where S(R) is a 4 × 4 matrix transforming the Dirac matrices αi , β and �i

S(R) =
(

U(R) 0
0 det[±]U(R)

)
, (26)

and U(R) is a (unimodular) 2 × 2 matrix and det[±] = det[D(3)(R)] with D(3)(R) being the
corresponding three-dimensional rotation matrix. Using now the invariance condition in (25)
explicitly, one can see immediately that the condition

S(R)[I4V (R−1r)]S−1(R) = I4V (R−1r) = I4V (r) (27)

yields the usual rotational invariance condition for the potential, while the terms

S(R)[cα · p]S−1(R), S(R)[βΣ · B(R−1r)]S−1(R), (28)

have to be examined with more care. Considering the scalar product here explicitly term-wise,
this reduces to the following common condition for both expressions in (28):

U(R)σU−1(R) = σ. (29)

As in the previous ‘spinor’ case the obvious meaning of equation (23) is that the
‘magnetization’ B(r) points along an arbitrary assumed ẑ-direction, i.e., is of the form

B(r) = B(r)n, n = (0, 0, 1). (30)

However, by comparing now the transformation properties in the ‘spinor’ and the ‘bispinor’
case, one can easily see that in the ‘bispinor’ case for a proper definition of collinearity an
induced rotation for the orientation of B(r), such as defined in equations (12) and (13), is
restricted by a possibly present rotational invariance condition for

(1) the (effective) potential V (r),

V (R−1r) = V (r), (31)

(2) the (effective) magnetization B(r),

B(R−1r) = B(r), (32)

and
(3) the invariance condition for the kinetic energy operator cα · p, whereby, because of the

term β�z B(r), the sign of σ has to be preserved, i.e., equation (29) has to be fulfilled
simultaneously.

Expressed in colloquial terms this simply means that ‘spin–orbit coupling’ also enters the
definition of collinearity.
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2.1.3. Translational properties. In the ‘spinor’ case translational invariance,

H(r + t) = I2(− 1
2 ∇2 + V (r + t)) + σz Bz(r + t) = H(r), t ∈ L(n), (33)

where L(n) is either a three-dimensional or a two-dimensional lattice, implies—as easily can
be checked—that

ξi = ξ0, ∀i ∈ I (L(n)), (34)

where I (L(n)) denotes the set of indices corresponding to L(n) and ξ0 is some arbitrarily chosen
orientation of B(r) such as for example ẑ. Equation (34) also applies in the ‘bispinor’ case,
since for a translation the matrix S(R) in equation (25) has to be the unit matrix, see also [17].
It should be noted that equation (33) can easily be extended to complex lattices. According to
the discussions above non-collinearity can formally only be introduced by either reducing the
dimensions of the lattice or, in special cases, considering complex lattices.

2.2. Magnetic configurations

Based on the previous section it is now very easy to define collinear magnetic structures in
layered systems. Suppose that for a two-dimensional translational invariant system (layered
system) a particular configuration

Ci = {. . . , nk−1, nk, nk+1, . . .}, (35)

where k numbers atomic layers, is defined [17] by a set of collinear unit vectors nk that
characterize the orientations of the magnetization in all atomic layers considered, then
configuration

C j = {. . . , nk−1,−nk, nk+1, . . .} (36)

refers to an arrangement in which with respect to Ci the orientation of the magnetization
is reversed in the kth atomic layer. Taking also non-collinear configurations into account
implies that C j can be reached [17] in a continuous manner by means of a rotation U(
) of
nk , 0 � 
 � 2π , around an axis perpendicular to nk , i.e., by considering configurations of the
form

Ci (
) = {. . . , nk−1, U(
)nk, nk+1, . . .}. (37)

This implies that although within one atomic layer because of translational symmetry
collinearity has to apply, with respect to each other the various layers can be orientated
non-collinearly. Restricting, however, theoretical investigations to collinear configurations
demands that in all atomic layers the corresponding orientations of the magnetization are
either parallel or antiparallel to a given direction. This is indeed important to recall since
even in the simplest case of a ferromagnetic configuration (all orientations are parallel) the
prechosen direction of reference can be in plane or perpendicular to the planes of atoms.

3. Interlayer exchange coupling and the magnetic force theorem

At a first glance it would seem that by simply taking the total energy difference between the
two relevant magnetic configurations, namely the so-called ferromagnetic (‘parallel’) and the
antiferromagnetic (‘antiparallel’) ones, the IEC can readily be obtained. Unfortunately this
implies taking the difference between two very large numbers, i.e., one has to be sure that
both total energies are well converged not only with respect to the Brillouin zone integration
used but also with respect to a sufficient number of decimal places since the IEC usually is
only of the order of a few millielectronvolts or even less. Independent from the actual ‘band
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structure’ method applied this caveat makes the use of total energies numerically not quite
advisable. Furthermore, electronic structure methods based on three-dimensional translational
periodicity (‘supercell approaches’) can be quite misleading for essentially two reasons:

(1) in reality, i.e., in experiments, there is only a trilayer system consisting of two magnetic
slabs and a spacer and not a periodic array of trilayers, and

(2) by changing for example the thickness of the spacer the Fermi energy changes, causing
in turn incompatibilities with respect to the magnetic slabs.

For the latter reasons essentially only approaches based on two-dimensional periodicity
(‘surface Green function approaches for layered systems’) guarantee a physically correct
description of a system consisting of a substrate and a magnetic trilayer with a free surface, in
particular since only Green function approaches are suitable for taking into account effects of
alloying and interdiffusion at interfaces in terms of the coherent potential approximation.

In most applications the magnetic force theorem [3] was applied by considering only the
grand potentials of the two magnetic configurations under investigation

�Eb = Eb(C) − Eb(C0), (38)

evaluating, however, only the reference configuration (C0, one of them) self-consistently. If c p
α

denotes the respective concentrations of the constituents A and B in layer p then in terms of
the (inhomogeneous) CPA for layered systems [15] �Eb is given by

�Eb =
N∑

p=1

∑
α=A,B

c p
α�E p

α , (39)

where the

�E p
α =

∫ εF

εb

�n p
α(ε)(ε − εF ) dε, (40)

refer to component- and layer-resolved contributions to the grand potential at T = 0. In
equation (40) �n p

α(ε) is the difference of the component-and layer-projected DOSs with respect
to the orientation of the magnetization, εb denotes the bottom of the valence band and εF is
the Fermi energy of the (nonmagnetic) substrate. Note that because of the definition given in
equation (38) a positive/negative value of the IEC implies an antiparallel/parallel set-up of the
orientations of the magnetization. The numerical advantage of using the grand potentials is
that

(1) they can be calculated very accurately and that
(2) only differences of reasonably small numbers have to be taken.

The error made by evaluating only one magnetic configuration self-consistently is usually of
the order of 3–5%, see [40].

Since in the following exclusively examples in terms of the screened KKR method [31, 46]
will be shown the reader is referred to the vast number of papers [7–14, 16, 18–21, 25, 26, 30, 39]
that are based on the TB-LMTO method [47] in which all kinds of effect on the IEC, from
ordering to temperature effects, have been investigated.

It should be noted that the definition in (38) also applies to the so-called band energy
part of the magnetic anisotropy energy [31]. In this case C and C0 refer to a uniform in-plane
and a uniform perpendicular-to-the-planes-of-atoms orientation of the magnetization. It was
found, e.g., that in some systems such as Cu(100)/Con [23] the corresponding band energy
contribution oscillates with n.
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4. Kubo–Greenwood type description of electric transport

In this section the main emphasis is devoted to the use of a Kubo–Greenwood description of
electric transport in a magnetic multilayer system. Since this is not the only approach to deal
with this problem the reader is also referred to a Kubo–Landauer-type method [29, 32–35, 41]
at present in use within the TB-LMTO method.

4.1. General expressions

Suppose the electrical conductivity of a disordered system, namely σµν , is calculated using the
Kubo–Greenwood formula (see [4–6, 46])

σµν = π h̄

N0�at

〈∑
m,n

J µ
mn J ν

nmδ(εF − εm)δ(εF − εn)

〉
. (41)

In this equation µ, ν ∈ {x, y, z}, N0 is the number of atoms, J ν is a representation of the νth
component of the current operator,

J ν = {J ν
nm}; J ν

nm = 〈n|Jν |m〉, (42)

|m〉 is an eigenstate of a particular configuration of the random system, �at is the atomic
volume and 〈· · ·〉 denotes an average over configurations. Equation (41) can be reformulated
in terms of the imaginary part of the (one-particle) Green function

σµν = h̄

π N0�at
Tr 〈JµImG+(εF )JνImG+(εF )〉 (43)

or, by using ‘up-’ and ‘down-’side limits, this equation can be rewritten [5] as

σµν = 1
4 {σ̃µν(ε

+, ε+) + σ̃µν(ε
−, ε−) − σ̃µν(ε

+, ε−) − σ̃µν(ε
−, ε+)}, (44)

where

ε+ = εF + iδ, ε− = εF − iδ; δ → 0, (45)

and

σ̃µν(ε1, ε2) = − h̄

π N0�at
tr 〈JµG(ε1)Jν G(ε2)〉; εi = ε±; i = 1, 2. (46)

4.2. Two-dimensional translational invariant systems

As in the bulk case [5, 46] a typical contribution to the conductivity can be expressed in terms
of real space scattering path operators [31, 46],

σ̃µν(ε1, ε2) = (C/N0)

n∑
p=1

{ ∑
i∈I (L2)

n∑
q=1

{ ∑
j∈I (L2)

tr〈J pi
µ (ε2, ε1)τ

pi,q j(ε1)J q j
ν (ε1, ε2)τ

q j,pi(ε2)〉
}}

(47)

where C = −(4m2/h̄3π�at) and N0 = nN is the total number of sites in the intermediate
region (actual multilayer augmented by a few layers of the substrate and the cap), as given in
terms of the number of layers p, q in the multilayer (n), and the order of the two-dimensional
translational group N (number of atoms in one layer). In (47) I (L2) denotes the set indices
corresponding to the two-dimensional lattice L2. This equation is of such a form that not only
lattice Fourier transformations [15] can be performed, but also an inhomogeneous CPA can
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be applied [15]. One finally obtains the following relation for the diagonal elements of the
conductivity tensor:

σµµ(n; c; C) = lim
δ→0

σµµ(n; c; C; δ), σµµ(n; c; C; δ) = 1

n

n∑
p,q=1

σ pq
µµ(c; C; δ), (48)

where δ refers to the imaginary part of the Fermi energy and C to the chosen magnetic
configuration and the vector c contains the layer-wise concentrations of species A and B,
c p
α , of a possibly inhomogeneous alloyed layered system.

4.2.1. Current-in-plane geometry. In the case of a current-in-plane (CIP) geometry the
resistivity is then simply given [36] by

ρµµ(n; c; C) = lim
δ→0

ρµµ(n; c; C; δ), ρµµ(n; c; C; δ) = 1/σµµ(n; c; C; δ), (49)

and was used for quite a few systems such as permalloy [36] or Fe/Cr/Fe [40] and Co/Cu/Co [42]
spin valve systems.

4.2.2. Current-perpendicular-to-the-planes geometry. For a current-perpendicular-to-the-
planes (CPP) geometry the sheet resistance for a particular magnetic configuration can be
obtained from the following set of equations [37]:

n∑
q=1

ρpq(n; c; C; δ)σqp(n; c; C; δ) = δpq (50)

r(n; c; C; δ) =
n∑

p,q=1

ρpq(n; c; C; δ) (51)

r(n; c; C) = lim
δ→0

r(n; c; C; δ) (52)

such that

|r(n + m; c; C) − r(n; c; C)| < �; n, m ∈ N
+, (53)

where � is an infinitesimally small number. This approach has been successfully applied to
Fe/Ge/Fe [37] and Fe/ZnSe/Fe [38] heterostructures.

4.2.3. Giant magnetoresistance. The giant magnetoresistance is finally is defined by the ratio

M R(n; c) = R(n; c; C1) − R(n; c; C0)

R(n; c; C1)
, (54)

R(n; c; C) =
{

ρ(n; c; C); CIP

r(n; c; C); CPP,
(55)

where C1 refers to the antiferromagnetic and C0 to the ferromagnetic configuration. The
advantage of using this kind of definition is simply that M R(n; c) � 1.

5. Dangers, applications and illustrations

5.1. What is the correct antiferromagnetic configuration?

Consider for simplicity a typical trilayer system deposited on a non-magnetic substrate of
orientation (hkl), i.e. the system substrate(hkl)/M1/S/M2/V ac, with M1 and M2 denoting
two magnetic slabs of thickness (in monolayers) m1 and m2, and S referring to a spacer of
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Figure 1. Interlayer exchange energy for bcc-Fe(100)/Fe6CrnFe6/Vac for n = 24 (open circles)
and n = 25 (open squares) with respect to an increasing number k of Cr layers on top of and aligned
magnetically parallel to the Fe substrate. Full circles correspond to the bias (from [48]).

thickness s. Clearly enough depending on the kind of material used for M1 and M2 and
their respective thicknesses a ferromagnetic configuration refers to a uniform orientation of
the magnetization either perpendicular (‘in plane’) or parallel (‘perpendicular to the planes
of atoms’) to the surface normal. Less clear is the definition of ‘the’ antiferromagnetic
configuration, since the spacer material can be partially or even totally magnetized. Suppose
s1 and s2 represent the numbers of magnetized spacer layers in the vicinity of the left-and
the right-hand interface in the above example. As long as (s1 + s2) < s the antiferromagnetic
configuration with respect to a given ferromagnetic configuration is simply defined by reversing
the orientation of the magnetization in either the (m1 +s1) atomic layers on top of the substrate,
or the (m2 + s2) layers of the system interfacing vacuum. Very small differences in the IEC
corresponding to these two cases can occur and can be caused by whether or not M1 and M2

are formed by the same material. If, however, (s1 + s2) = s then difficulties can arise whether
s is even or odd. In the case of an even number of magnetized spacer layers the orientation
of the magnetization can be reversed either in the first half (m1 + s1) layers of the multilayer
system or in the second half (m2 + s2). In the case of an odd number of spacer layers either
(m1 + s1) > (m2 + s2) or (m1 + s1) < (m2 + s2). Both cases, namely when the orientation
of the magnetization in half of the spacer is reversed simultaneously, are usually termed a
‘symmetric’ antiferromagnetic configuration.

A famous case of a magnetized spacer is the system bcc-Fe(100)/Crs/Fes2 [38]. In figure 1
the IEC in this system is shown for s = 24 and 25 as a function of the number of Cr layers
parallel to the orientation of the magnetization in M1. As can be seen there is a kind of bias
(defined in this particular case as the arithmetic mean of the top and the bottom curve) around
which the IEC will oscillate. This bias is not zero since m2 
 m1, for details see [38].

The oscillations of the IEC corresponding to the ‘symmetric’ antiferromagnetic
configuration (m1 + s1) � (m2 + s2) are shown in figure 2. Also displayed in this figure
is the case of perpendicular exchange coupling. One can easily read off from this figure two
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Figure 2. Antiparallel (top) and perpendicular (bottom) IEC in bcc-Fe(100)/Fe6CrnFe6/Vac
(from [48]).

periods of oscillations, namely a short period of two monolayers (MLs) and a long period of
about 16–17 ML, and even see the famous ‘phase slip’.

It should be noted that the examples shown here are meant to draw attention to the fact that
the IEC is by no means an easy property to describe. Even in cases when no interdiffusion at
interfaces has to be taken into account, exactly the same sample characteristics as in experiment
have to be reproduced in the theoretical descriptions, since otherwise any comparison with
experimental data becomes useless.

5.2. Does the GMR have the same kind of oscillation as the IEC?

This question was posed right from the beginning and it seemed to be obvious by intuition,
since the resistivity of an antiferromagnetic arrangement is said to be larger than of a
ferromagnetic arrangement. As can be seen from figure 3 in CIP the resistivity of the bcc-
Fe(100)/Fe6CrnFe6/Vac system shows a period of 3–4 ML which, however, is not mapped in
the corresponding IEC, see figure 2; the phase slips at 15 and 30 ML on the other hand can be
traced also in the GMR as at these thicknesses the GMR vanishes or even changes sign.

Alloying of the spacer homogeneously can have drastic effects [42]: as can be seen
from figure 4 in Co/Cu/Co spin valves small amounts of Ti or Pd (Pt) can reduce the GMR
considerably or even whip out the whole effect. The effect of interdiffusion is illustrated
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Figure 3. CIP electric transport: parallel (open squares) and antiparallel (full circles) in-plane
resistivities (top) and magnetoresistance (bottom) of bcc-Fe(100)/Fe6CrnFe6/Vac, n � 42. The
imaginary part δ of the complex Fermi energy εF + iδ is 2 mRyd.

in figure 5, in which several interdiffusion profiles for a particular Co/Cu/Co spin valve are
considered (for further details, see [42]).

The question of where the GMR in the case of a CPP geometry is coming from can be
best illustrated using layer-resolved sheet resistance differences, see equation (51),

rp(n; c; C; δ) =
n∑

q=1

ρpq(n; c; C; δ) (56)

and performing the sum over the layers in relevant parts such as leads (Lle f t , Lright ), a few
layers forming the interfaces (Ile f t , Iright ) and the spacer (S).

�r(n; c;AP; δ) ≡
n∑

p=1

rp(n; c;AP; δ) − rp(n; c;P; δ) = �rLle f t (n; c; δ) + �rLright (n; c; δ)

+ �rIle f t (n; c; δ) + �rIright (n; c; δ) + �rS(n; c; δ). (57)

This procedure is used in figure 6 for a particular Fe/ZnSe/Fe heterostructure. As can be seen
for both kinds of termination the GMR effect is caused by the interfaces. For details see [38].
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Figure 4. (a) Resistivities and (b) GMR for a model spin-valve structure with homogeneously
alloyed Cu spacer layers Co(100)/Co12(Cu100−cXc)12Co12/Co(100) with δ = 2 mRyd and with
outgoing boundary conditions. X = Ag (dash–dotted curves), Pd (dotted curves), Pt (dashed curves)
or Ti (solid curves). Resistivities for the antiparallel configuration are displayed by open squares,
resistivities for the parallel configuration by full circles (from [49]).

6. IEC and GMR

In principle, if C0 denotes the collinear ground state, one can view [43] the MR as an implicit
function of the exchange coupling energy ε,

ε = Eb(C) − Eb(C0) � 0,

R(ε) = r(C0) − r(ε)

r(C0)
,

(58)

where in CPP r(ε) is that sheet resistance (resistivity in the case of CIP) which (with respect to
C0) corresponds to a magnetic configuration of interlayer exchange energy ε. Clearly enough
for certain regimes of ε the magnetoresistance R(ε) remains constant while in other regimes
rapid changes with ε occur: the interlayer exchange energy ε acts like a magnetic field (external
energy) that is switched on continuously. Increasing ε ‘forces’ the system to gradually assume
the magnetic configuration with the next highest energy, etc. Consequently one can define the
exchange bias Ebias in terms of R(ε) in the following manner:

0 � ε � Ebias : R(ε) = 0; ε > Ebias : R(ε) �= 0. (59)
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Figure 5. (a) Resistivities and (b) GMR as a function of interdiffusion amount and profile for the
model spin-valve structure Co(100)/Co12Cu12Co12/Co(100) with δ = 2 mRyd. Resistivities for the
antiparallel configuration are displayed by open squares, resistivities for the parallel configuration
by full circles. The solid curves connect the values corresponding to interdiffusion confined to the
two ML adjacent to the interface; the dotted curves connect the various broader profiles (from [42]).

Obviously for all ε � Ebias it is sufficient to consider only collinear configurations, while for
ε > Ebias also particular non-collinear configurations have to be taken into account. It should
be noted that of course this definition applies only to systems for which a recordable change
in the MR can be observed, e.g., in spin-valve systems with an AF part.

In figure 7 the ten lowest collinear interlayer exchange energies and the corresponding
MR (CIP and CPP) are shown for Co(111)/Co6/(CoO)n/Co6/Cu6/Co6/Co(111), n = 6, 12.
Although the interlayer exchange energy increases for the first seven (collinear) configurations
the MR remains zero and only jumps suddenly between configurations C7 and C8. This jump
between configurations C7 and C8 is characteristic for both thicknesses of the CoO part of
the system. The ‘flip energy’ E f lip that causes the jump in the MR can be defined as the
difference between Ebias and the closest larger collinear interlayer exchange energy (C8 in the
present case). In the present case this energy amounts to 0.416 meV for n = 6 and 0.399 meV
for n = 12. In order to give a rough estimate in kOe, by using the relation �E = µB B
(1 meV = 172.76 kOe), these energies amount to 72 and 69 kOe, respectively.
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Figure 6. Normalized fractions of the difference in the sheet resistance between the
antiferromagnetic and the ferromagnetic configuration in Fe(100)/(ZnSe)21 /Fe(100). The various
regions of the heterostructure are given explicitly (from [38]).

Ebias is caused by two different types of effect, namely

(1) a rearrangement of the orientations of the magnetization in the oxygen layers and
(2) a rearrangement of orientations in the Cu spacer layers.

For n � 6 Ebias depends only very weakly on the thickness of the CoO part of the system and
amounts to about 0.035 meV (6 kOe, see the above relation). In table 1 of [44] the maximum
reported value of the exchange bias for Co–CoO materials is listed as 9.5 kOe; the agreement
with experiment is therefore reasonably good. For further details, see [43].

7. Summary

It was the aim of this paper to review certain theoretical aspects of the interlayer exchange
energy and the GMR, emphasizing in particular the concept of magnetic configurations. Many
important ingredients of a more complete theoretical description of these phenomena are still
missing: effects of finite temperature, macroscopical roughness at interfaces, the problem of
vertex corrections in the case of electric transport etc. However, it is quite encouraging to see
results of careful experiments and of carefully conducted theoretical calculations agree within
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Figure 7. The ten lowest interlayer exchange energies and corresponding magnetoresistances.
CPP and CIP are denoted by circles and diamonds, respectively. The number of repetitions of a
CoO double layer is marked explicitly (from [43]).

a factor of two to five. This indeed is almost miraculous when comparing [45] conductivities
or resistivities (absolute numbers) in such complicated systems as spin valves.
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[21] Kudrnovský J, Drchal V, Bruno P, Turek I and Weinberger P 1997 Phys. Rev. B 56 8919
[22] Weinberger P, Sommers C, Pustogowa U, Szunyogh L and Újfalussy B 1997 J. Physique I 7 1299
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